Neutron-antineutron oscillation in MicroBooNE

Jennet Dickinson May 28, 2014

Neutron-antineutron oscillation

- A neutron (either free or bound in a nucleus) suddenly oscillates to an antineutron
 - Lower limits on oscillation lifetime from Super K:
 1.89 x 10³² years for n bound in oxygen, 2.44 x 10⁸ seconds for free n
- This process violates conservation of baryon number
 - $-\Delta B = 2$
- If $n-\overline{n}$ oscillation happens in a nucleus, the \overline{n} annihilates with one of the surrounding nucleons, producing a spray of pions
 - Momentum ≈ 0, Energy ≈ 2GeV

Searching for n-n oscillation

- Neutrino detectors are the perfect place to search for rare processes like $n-\bar{n}$ oscillation
 - Low cosmic ray background (underground)
 - Large detector volume
- As a small surface detector, MicroBooNE will not be able to make competitive measurements/ place competitive limits on n-n oscillation
- Future multi-kiloton LArTPCs will! Studying the signature in MicroBooNE will be useful for this

n-n oscillation in Super K

- September 2011: The Search for n- \overline{n} oscillation in Super Kamiokande I (arXiv 1109.4227)
- Super K is a water Cherenkov detector → look for n-n
 oscillation in oxygen

Solid: atmospheric v background

Dashed: n-n oscillation

 Average visible energy is 700 MeV < 2 GeV! (many reasons for this; large contributions by Cherenkov threshold effects)

n-n oscillation in Super K

- 12.1% detection efficiency for n-\bar{n} oscillation events
- Saw 24 candidate events. 24.1 background events were predicted
- Super K places cuts on:
 - Number of Cherenkov rings, total momentum, total visible energy, and invariant mass
 - Additional cuts to be explored: http:// www.nevis.columbia.edu/reu/2011/AyoubReport.pdf

A LArTPC could potentially improve on this

Simulating n-n oscillation in MicroBooNE

- We approximate $n-\overline{n}$ oscillation by simulating \overline{n} -nucleon annihilation in MicroBooNE
 - Does not include intra-nuclear interactions of final state particles
 - Does not take into account the breakup of the Argon nucleus
- A more thorough study would need to include these effects – especially since we expect them to be more pronounced in Ar than in O
 - Work already being done modeling these intra-nuclear effects (LBNE docdb #8940)

n-nucleon annihilation generator

- Available in the uboone offline repository:
 - https://cdcvs.fnal.gov/redmine/projects/ ubooneoffline/repository/show/users/jennetd
- Generates final states according to these branching ratios (arXiv 1109.4227):

$\bar{n}+p$		$\bar{n}+n$		
$\pi^+\pi^0$	1%	$\pi^+\pi^-$	2%	
$\pi^+2\pi^0$	8%	$2\pi^0$	1.5%	
$\pi^+3\pi^0$	10%	$\pi^+\pi^-\pi^0$	6.5%	
$2\pi^+\pi^-\pi^0$	22%	$\pi^+\pi^-2\pi^0$	11%	
$2\pi^{+}\pi^{-}2\pi^{0}$	36%	$\pi^+\pi^-3\pi^0$	28%	
$2\pi^+\pi^-\omega$	16%	$2\pi^+2\pi^-$	7%	
$3\pi^{+}2\pi^{-}\pi^{0}$	7%	$2\pi^+2\pi^-\pi^0$	24%	
		$\pi^+\pi^-\omega$	10%	
		$2\pi^{+}2\pi^{-}2\pi^{0}$	10%	

Ratio of \overline{n} -p to \overline{n} -n annihilations is 1.63, scaled from ratio measured in deuterium

Does the generator work?

We generated 2500 events. Resulting final states match up well with the branching ratios we input:

	$\bar{n}+p$			$\bar{n}+n$	
Final State	Predicted	Observed	Final State	Predicted	Observed
$\pi^+\pi^0$	9.5 ± 6.1	11	$\pi^+\pi^-$	31 ± 11	23
$\pi^+2\pi^0$	76 ± 17	66	$2\pi^0$	23 ± 9.4	23
$\pi^+3\pi^0$	95 ± 19	105	$\pi^+\pi^-\pi^0$	101 ± 20	114
$2\pi^{+}\pi^{-}\pi^{0}$	209 ± 27	200	$\pi^+\pi^-2\pi^0$	171 ± 25	175
$2\pi^{+}\pi^{-}2\pi^{0}$	342 ± 35	345	$\pi^+\pi^-3\pi^0$	434 ± 41	420
$2\pi^+\pi^-\omega$	152 ± 24	153	$2\pi^+2\pi^-$	109 ± 20	114
$3\pi^{+}2\pi^{-}\pi^{0}$	67 ± 16	7 1	$2\pi^+2\pi^-\pi^0$	372 ± 37	385
			$\pi^+\pi^-\omega$	155 ± 24	149
			$2\pi^+2\pi^-2\pi^0$	155 ± 24	146

✓ Ratio of n̄-p to n̄-n annihilations is 1.63, as expected

Does the generator work?

We can look a the total energy & momentum of

the final state particles

✓ Total momentum is 0

✓ Total energy is either 1.879 GeV (2m_n) or 1.877 GeV (m_n + m_p)

The generated events

- On average, these events have
 - 2.8 charged pions
 - 1.4 neutral pions
 - 4.2 final state pions (both charged and neutral)
 - Note: this doesn't include the decay products of ω
 - Note: we expect the number of pions exiting the nucleus to be diminished by nuclear effects
- We can import the generated final states into LArSoft and look at the event topology

Example events

Example events

Example events

5/28/14

13

Summary & Next Steps

- The generator is ready to use! Example events exist
- Can begin working on reconstruction of these events
 - Requires good multi-track/shower event reconstruction and good shower/track separation
- Can study signal efficiency optimization
- Can do similar studies of cosmogenic backgrounds